
Architecture and Design of the MGR Window System.

Stephen A. Uhler

Bellcore

ABSTRACT

MGR is a window system for UNIX, currently running on a Sun Workstation. MGR

features overlapped, asynchronous windows, and an applications interface that is both machine
and network independent. All existing Unix applications can run unchanged under MGR,
either on a local, or a remote host. New applications may be written to take full advantage of
the graphical capabilities of the bit-mapped display. This paper discusses the implementation
and strategy of the window system and demonstrates its applicability in a software develop-
ment environment consisting of different kinds of Unix machines.

Introduction

What is MGR

MGR (manager) is a window system for UNIX1

that runs on Sun Microsystems Workstations. MGR

manages asynchronous updates of overlapping win-
dows and provides application support for a hetero-
geneous network environment with different types of
computers connected by various communications
media. The application interface allows applications
(called client programs) to be written in a variety of
programming languages, and run on different operat-
ing systems. The client program can take full advan-
tage of the windowing capabilities regardless of the
type of connection to the workstation running MGR.

Client programs communicate with MGR via
pseudo-terminals † over a reliable byte stream. Each
client program can create and manipulate one or
more windows on the display, with commands and
data to the various windows multiplexed over the
same connection. MGR provides ASCII terminal
emulation and takes responsibility for maintaining
the integrity of window contents when parts of win-
hhhhhhhhhhhhhhhh

† A pseudo-terminal is a pair of devices that together
function as a bidirectional pipe, where one side, the slave
end has terminal semantics, and the other, or master side,
has several control functions as well as the normal read and
write capabilities.

dows become hidden by other windows then subse-
quently uncovered. This permits naive applications
to work without modification by providing a default
environment that appears to be an ordinary terminal.

In addition to terminal emulation, MGR pro-
vides each client window with a variety of features
including graphics primitives such as line and circle
drawing; facilities for manipulating bitmaps, fonts,
icons, and pop-up menus; commands to reshape and
position windows; and a message passing facility
enabling client programs to rendezvous and
exchange messages. MGR also provides for both
synchronous and asynchronous event notification as
well as a user initiated cut-and-paste function that
permits a user to sweep out and copy text from any
window into a global buffer, then paste it into any
other window.

Background of MGR

MGR implementation began in 1984. At that
time, there were no window managers available for
Sun workstations that functioned on heterogeneous
networks of computers, with client programs that
used windowing facilities while executing as
separate processes on remote hosts. In addition, the
computing environment required applications to run
on a variety of operating system platforms, con-
nected over different types of interprocess communi-
cations networks. The system platforms included

Draft (16)



- 2 -

both UNIX System V and BSD 4.2, as well as several
experimental in-house variants. The computers were
connected, not only by ethernet but by serial lines
and circuit switches as well, with plans for fiber
optic token ring networks and perhaps other exotic
interconnects to come. It was necessary to carefully
separate the networking software from the window
management, so arbitrary interconnects could be
accessed with no changes required to MGR.

MGR was intended to be a means of providing
an application platform in a distributed computing
environment. It was appropriate to require compati-
bility with existing programs, eliminating the need to
re-write the existing software base. More to the
point, vi, mail , the shell , and the other
existing UNIX applications needed to work
unchanged, not only because there was neither the
time nor resources to rewrite them all, but also to
ease the transition for the user community, currently
working with ASCII terminal based software.

MGR Architectural Overview
MGR consists of a single user level process. It

requires no kernel modifications or special device
drivers. Like any other user process it is started from
the shell, and may be suspended, restarted, or killed
by the user. Figure 1 shows a pictorial representa-
tion of the MGR process and its connections to sys-
tem resources and client programs.

MGR was designed to be portable to a variety
of computer systems. To date it runs on Sun Works-
tations (monochrome and color), Apple Macintoshes
and UNIX System V based Dune 2 distributed com-
puters. It is divided into two components, the
hardware dependent component, and the hardware-
independent, or portable component. The hardware
dependent component deals entirely with the physi-
cal devices, the mouse (or other locator device), key-
board, and the display. The portable component, the
bulk of MGR, contains no hardware dependencies; it
calls the hardware dependent routines as required.

The portable component of MGR needs to
interact with operating system facilities, such as
reading and writing files and, by necessity, contains
some operating system dependencies. As with the
hardware interfaces these operating system depen-
dencies are well contained and isolated to permit
modification for different system interface require-

ments. This has allowed MGR to be ported to other
operating system interfaces quickly, such as a
Macintosh-plus in two weeks, and to Dune in a sin-
gle day.

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 1. MGR Interconnections

MGR contains five functional components:

(1) Process Creation and Management. Process
creation deals with the creation of processes
(client programs) to run in a window, and the
instantiation of the connections between client
programs and MGR. Process management deals
with the maintenance of those connections over
the life of the client programs and their win-
dows.

(2) I/O Scheduling. I/O scheduling manages
client program output to windows as well as
processing and scheduling of keyboard and
mouse input.

(3) Window Management. The window manage-
ment component starts with a blank display
and creates the illusion of overlapping win-
dows. It manages reshaping and repositioning
windows, maintaining the display integrity,
drawing text and graphics, menus, and tracking
the mouse. Everything the user sees on the
display is handled by the window management
function.

(4) Command Processing. The command pro-
cessing component reads commands and data
from a process, interprets the commands, and

Draft (16)



- 3 -

issues the appropriate calls to the window
management functions. It also provides feed-
back for the I/O scheduler to maintain smooth
operation.

(5) User Interface. The user interface takes input
from the mouse and keyboard, and processes
the system commands issued by the user from
these devices.

In addition to those components mentioned
above, there is startup and initialization code that
reads and executes the startup files, decodes the com-
mand line arguments and initializes the display, key-
board, and mouse.

Data Structures for Windows
MGR uses a doubly linked list of objects, called

window descriptors, to represent the spatial ordering
of windows on the display. For MGR, a window is a
bordered region of the display that may be indepen-
dently moved, reshaped, or changed in spatial posi-
tion with respect to other windows on the display.
Although the actual ordering of windows on the
display is not totally ordered, the windows are topo-
logically sorted into the window list to insure their
spatial ordering is preservered. The ordering is esta-
blished by the window creation order, and main-
tained by the window manipulation algorithms.

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 2. Linked list window structure

Each window descriptor contains a complete

state description of its window* The linked list struc-
ture permits complete equality among windows:
there are no parent - child relationships and no win-
dows are restricted in size or extent by other win-
dows on the display. The order of windows in the
list may be altered either by the user or an applica-
tion program. The use of a list of window descrip-
tors with each object representing the entire state of
its window is a simple, effective and easy to manage
representation of overlapping windows on the
display. Figure 2 shows the relationship between the
windows on the display and their window descrip-
tors.

Process Creation and Management
In a networked environment, where client pro-

grams running in a window can be either on a local
or remote computer, process creation is important. If
applications do not migrate from machine to
machine over their lifetime (they currently do not),
all networking capability must be contained in the
process creation and connection phase.

Process Creation

The process creation interface is simple. It is
supplied a command, with arguments (e.g. via
exec ) and it returns an process id and a connec-
tion . The id is simply the process id or UNIX

pid, which is used to uniquely identify the pro-
cess. The connection is a file descriptor, which is
used along with the read and write system
calls to communicate with the process.

Because of this simple interface, it is easy to
plug in different process creation modules to meet
the requirements of various operating systems and
networks. The process creation routine used by the
current Sun implementation operates as follows:

1) A pair of pseudo-terminals (or ptty ’s for
short) is opened. All client program have the termi-
nal semantics implied by the ptty ’s. 2) MGR

fork s, creating a child process with standard input
and output opened to the slave, or terminal side of
the ptty. 3) The child process is placed in its own
process group, with the ptty as its controlling termi-
nal. 4) The ownership of the controlling terminal is
hhhhhhhhhhhhhhhh

* See the appendix for the complete set of parameters
that comprise the window descriptors.

Draft (16)



- 4 -

changed to reflect the ownership of the process†. 5)
An entry is then made in the /etc/wtmp file that
represents the client program as a user visible to the
who command. 6) The client program is exec ed
from the child process.

Internetworking

MGR has no built in notion of networking.
Network facilities abound in UNIX systems; there are
rcp , rlogin , ftp , tip , kermit3 , and
many other programs whose purpose is to provide
network access to remote computers. MGR’s role is
managing windows and not networks. The MGR

strategy is to use existing network access commands
to provide networking capability and not to re-
implement the networking capability within MGR.
Consequently MGR can access any network that is
supported by existing programs. New network
media and protocols can be used by MGR automati-
cally, with no changes to MGR’s code, simply by
taking advantage of the already existing networking
access routines.

A typical example of networking in MGR is
creating a shell on a remote host, running in a win-
dow. This may be accomplished by typing: rlo-
gin over_there if internet access is available, or:
kermit If the available network is dial up serial
lines. In the first case, a shell on the remote host
over_there is created. The rlogin and rlo-
gind , networking commands supplied with BSD
UNIX, set up the connection and start the shell on the
remote computer over_there . In the second exam-
ple, kermit , with the appropriate startup file, will
dial another computer from a serial port, and start a
shell on the dialed-up machine. In both cases, the
user is provided with a shell running on a remote
machine. MGR is unaware of which network or what
mechanism was used to effect this connection.

Implications of the MGR Networking Strategy

Not only is MGR simpler and smaller without
any network code built in, but is more portable and
more network capable as no new code has to be writ-
ten or changed in order for MGR to work with a new
network interface.
hhhhhhhhhhhhhhhh

† This is the only place in MGR that setuid-root
privileges are needed. It is a design flaw in UNIX that re-
quires root privileges for this operation.

Another important implication of this network-
ing scheme is that MGR has no control over the net-
work. If a client program wants to create a second
window on the display, MGR cannot guarantee that
another circuit, or connection can be found between
MGR and the client program. This is the normal case
on serial lines: only one connection is possible per
line. Consequently, once a connection is created
between an application and MGR, is becomes the
only connection between the two for the life of the
application. Multiple windows per client program
are managed by multiplexing the data to each win-
dow over the same channel.

Yet another implication of the networking
scheme is that the topology and connectivity of the
network is unknown to MGR. If two client pro-
grams A and B are both connected to MGR, it is
not always possible for A and B to open a direct
connection between themselves. Consequently,
MGR provides an inter-application communications
mechanism whereby different applications can ren-
dezvous and communicate with each other using
MGR as the go-between. This simple and effective
communication mechanism encourages inter client
program communication, providing the opportunity
for an integrated application environment.

Authentication and Network Security

Since MGR relies on other programs to supply
the session level networking control (all network
security and authentication issues are resolved by
these programs), MGR needs no password authenti-
cation or trusted host mechanism; it is piggybacked
on top of those mechanisms provided by the net-
working programs. This simplifies the security
aspects of MGR considerably.

As a result of MGR’s network scheme, the
inter-application messaging capability provided by
MGR is required to insure applications can communi-
cate with each other. To mitigate the risk of a hos-
tile client program corrupting unsuspecting ones
(such as shells) by sending them messages that
mimic commands, the message facilities will only
deliver messages from applications with the same
user permissions as the recipient.

Draft (16)



- 5 -

Process Termination.

When the process created with a window and
all of its children dies, its window (or windows)
should go away, as that process held the only con-
nection to the window. MGR senses the death of a
process in a window, either by receiving a
SIGCHILD indicating its demise, or a permanent
error condition on the communication channel. In
either case, MGR marks the window as dead and
buries it at the next convenient opportunity.

Conversely, when the user destroys a client
program’s window, MGR sends it a hangup signal if
possible, severs the MGR side of the communication
channel, restores the state of the ptty , and
modifies the /etc/wtmp file to indicate that the
client program has logged off.

I/O Scheduling
MGR maintains exclusive control over its sys-

tem resources. It controls access to the mouse, key-
board, and display. It reads mouse and keyboard
data, and dispatches it to the appropriate client pro-
gram. Similarly, all output from client programs
destined for the display is sent to MGR, which
schedules and dispatches the data to the appropriate
windows.

The method of reading, multiplexing, schedul-
ing and demultiplexing data has the primary impact
on the responsiveness, smoothness and throughput of
the entire window system. As such, the algorithms
chosen to implement this aspect of the window
manager determine its real time feel for the user.

MGR’s scheduling strategy is to let the users
think they are in control (this of course is just an illu-
sion, the user is really a slave to the window system).
The mechanism for achieving this goal is to give
highest priority for responding to user inputs. When
the mouse is being moved, the user is presumably
focussed on the mouse and at what it is pointing, not
at what output is going to an obscure window in a
distant region of the display. MGR has heuristics
built in to determine what the user is focussing on,
then switches attention to the same thing.

Overall Scheduling Strategy

The main body of code in MGR consists of the
main processing scheduling loop. This loop waits in
the select system call until input arrives. MGR

processes each type of input, then goes back to the
select to wait for more. This input may be from
any of the client program connections, the keyboard,
or the mouse. Each type of input is handled dif-
ferently, because the data generation rate and impor-
tance of each type of input is different.

Mouse Input

When there are mouse input data is available,
they are handled immediately. During periods of
low and moderate load, the main processing loop is
quick enough that only a small amount of mouse
data is ready in the input queue at each iteration, and
the mouse is tracked smoothly and uniformly. When
the input queue grows, indicating the system is
heavily loaded, MGR tracks the mouse in a more
efficient fashion by not tracking every mouse posi-
tion precisely but instead by throwing away inter-
mediate position information. Although this causes
a little jerkyness in the mouse tracking, it prevents
MGR from getting too far behind, and almost entirely
eliminates mouse-behind , the dreaded phenomenon
where the mouse cursor on the display is so far
behind the actual mouse position that the user feed-
back for mouse positioning is gone, and mouse
becomes useless. MGR does away with mouse-
behind .

Keyboard Input

Unlike the mouse, which spends most of its
time idle, then suddenly whizzes about at the rate of
120 characters/second, the keyboard input is slow.
MGR reads only one character at a time from the
keyboard, processing it as it arrives. It never gets
behind, people simply do not type that fast. Just in
case, any time MGR receives data from the keyboard,
MGR goes back to the select at the top of the
main processing loop to insure new keyboard input
data will be processed quickly on its arrival. In
actual use, keyboard response is always immediate.

Client Program Output

When managing the output from client pro-
grams destined for a window, it is important to retain
the illusion of simultaneity of updating various win-
dows while maintaining a high overall data
throughput. Any time there is input from a client
program, MGR reads a large chunk of that input and
stores it in a queue which is part of the MGR win-
dow descriptor for the desired output window.

Draft (16)



- 6 -

Reading large chunks (512 bytes) at a time minim-
izes the system overhead that would be caused by a
larger number of small reads. However, dumping
the entire queue to the window at once would ruin
the illusion of simultaneous updating. The user
would see one window update for a while, then the
next, then the next. To avoid this, the chunkiness
update problem, MGR writes only a small part of the
queue to the window at once before going on to pro-
cess data for the next window. As long as the
updates to each window are small, and hence quickly
completed, all updating appears simultaneous.

For each client program in turn, if there are
data to be read, MGR reads a big chunk into the
appropriate window descriptor queue. Then, if there
are any data in the queue, either because it was just
read, or it was left from before, MGR outputs a small
amount of the queue to the window See figure 3).
When MGR is finished processing data for every
window, it goes back to the select to wait for
more data to arrive. However, if there is any queued,
but not yet processed data in any of the window
queues, MGR switches in to polling mode and out of
waiting mode, so deadlock is avoided in the situa-
tion where there is no data arriving, but still some
left in the queues.

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 3. MGR client scheduling

There are two steps involved in determining
the amount of data to be sent to a window at one
time. The first step sets a maximum number of bytes

that may be processed in one pass of the main pro-
cess loop. The second step calculates the cost of
processing the data to insure that the cost does not
exceed a predetermined maximum. The cost of an
operation is directly related to the amount of pro-
cessing effort it will take to complete that operation.

The number of bytes to be processed at one
time is based upon the window’s priority. There are
three different window priorities. The active win-
dow, the one that is currently receiving mouse and
keyboard data has the highest priority. Windows
that are completely exposed have the medium prior-
ity, while windows that are partially or completely
obscured have the lowest priority. The different
priority levels were chosen to give more attention to
what the user is focussing on. High priority win-
dows get twice the maximum process slice as
medium priority windows. Low priority windows
get half of that. Of course for those users who have
no focus at all, there is a round robin scheduler that
treats all windows equally. The priority scheduler
works well on slow or heavily loaded workstations.
For a fast machine, such as a lightly loaded Sun
3/60, it does not make much difference which
scheduler is used.

Once the maximum data size is determined, the
command processor assigns a cost to each byte (or
group of bytes for multi-byte commands) as it is pro-
cessed. As soon as the processing cost exceeds a
preset threshold, processing of the queue is halted,
and the command processor returns the number of
bytes actually processed. Any unprocessed bytes
remain in the queue and are resubmitted to the com-
mand processor the next iteration of the main pro-
cess loop.

The amount of data processed for each window
in a single pass of the main loop is the minimum of
the number of bytes defined by the window’s priority
and the number of bytes it takes to exceed the cost
threshold.

Although processing exactly one character per
window per pass might seem to optimize the simul-
taneity of window updates, there is a reasonable
amount of setup overhead for each call to the com-
mand processor. Processing a single character per
window would reduce the overall system throughput
too much. The amount of data typically processed
per call is about of 40 to 80 bytes, or until an expen-
sive operation, such as scrolling the window occurs.

Draft (16)



- 7 -

Window Management
The Window Management component of MGR

implements all of the algorithms needed to update
and maintain the integrity of the display, manage
display resources, and handle menus, character fonts,
event notifications, and text cut-and-paste.

Window Management Algorithms

Each window descriptor has a flag, the covered
flag, to indicate if the window is totally visible on
the display, or if the window is partially or com-
pletely obscured by another window. Any time the
arrangement of windows on the display is changed,
each window’s covered flag is updated. If the win-
dow has become partially or completely covered by
another window, the covered flag is turned on. If a
previously covered window is completely exposed,
the covered flag is turned off. When the window
becomes covered, an off-display or backup copy of
the window is made in main memory. Updates to
the window by the command processor are made to
the backup copy of the window instead of directly to
the display. When a window becomes exposed, the
newly exposed portions of the window are copied
from the backup copy to the display, then the backup
copy is deleted, and the memory used by it freed.

In MGR, only the top window on the display
may be moved or reshaped. The window manage-
ment algorithms could readily handle changes to
arbitrary windows, but this would unnecessarily con-
fuse the user interface. The following five window
primitives are used by MGR to manipulate windows.
All window manipulations, except for becoming the
top window, only the top window is subject to win-
dow manipulation commands, which are composed
of combinations of these five primitives.

A window is created. A new window is
always created as the top window. Any windows
that are currently exposed, but would be covered by
the new window are marked covered and their win-
dow contents are saved in the backup copy of the
window.

A window is destroyed. Only the top window
may be destroyed. The background pattern is drawn
over the window, obliterating it. Then for each win-
dow that intersects the dying window, starting from
the bottom window, that portion of the covered win-
dow that was obscured by the dying window is
copied from the backup copy to the display. If the

window was covered only by the dying window, it is
marked uncovered and dealt with accordingly.
Although this technique can result in more display
updating than is necessary, it is easy to implement,
and the performance is satisfactory.

The top window is pushed to the bottom of
the display. If the window intersects any other win-
dows, a backup copy of the the other windows are
made, and the intersecting windows, starting from
the bottom, are redrawn where they intersect the
window in question. Any newly uncovered windows
are processed appropriately.

An arbitrary window is brought to the top of
the window list. All the windows currently on top
of and intersecting the window that will become
covered are marked covered, and a backup copy of
each window is made. The backup copy of the
current window is then copied to the display.

The top window is reshaped The process for
deleting the top window, then creating a new one are
followed in turn. Moving a window is simply a spe-
cial case of reshaping.

Updating Overlapping Windows

When only a part of a window is visible on the
display, because sections of it are covered by other
windows, the update manager insures that the visible
portions of the window are updated properly. The
update manager gets called once by the command
processor, just before it completes. The update
manager is called whenever the backup copy of a
covered window has changed, and the visible por-
tions of that window on the display need to be
updated, reflecting the current state of the backup
copy.

The window descriptors maintain no informa-
tion regarding the position of other windows that
may intersect with them. When the update manager
is called, it determines which portions of the window
are visible and updates them appropriately by copy-
ing sections of the backup copy of the window to the
display. By using this strategy, there is never a per-
formance penalty imposed on a window simply
because it might have to update while obscured
some day. All of the work required to implement
background updates is done only when the updates
are actually required; there is no information pre-
computed as windows are rearranged.

Draft (16)



- 8 -

The update manager is called with 3 parame-
ters: 1) the window to be updated, 2) the current list
of windows, and 3) the bounding rectangle of
changes to the backup copy of the window, as deter-
mined previously by the command processor.

Background updates are accomplished using
the following strategy.

(1) The update manager first identifies all of the
windows that are on top of the current window.

(2) All of the top and bottom coordinates of the
intersecting windows are sorted into one list,
whereas the left and right sides are sorted into
another.

(3) From these two lists, the set of non overlapping
rectangles that cover the window are computed
by using adjacent pairs of x and y coordinates
to define the sides of each rectangle (see figure
4).

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 4. Determining which parts of the window show
through to the display

(4) Each rectangle in the set is checked to see if it
is covered by some window.

(5) Each rectangle that is visible is put onto a list,
the update list, which defines which of the rec-
tangles shows through to the display.

(6) As rectangles are placed on the update list, they
are combined with rectangles already on the
list, where appropriate, to make fewer large
rectangles (figure 5).

(7) Updating the backup copy of the window is
simply a matter of laying the update list of rec-
tangles on top of the backup copy of the win-
dow, and transferring the intersection to the
display.

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 5. Update list of rectangles

Two additional steps are done to improve the
efficiency of the above process. First, the algorithm
described above is applied only when some change
happens to the shape or position of some window
that would result in a change to the update list, and
only when a background update has been requested.
Second, instead of copying the entire backup copy
through the update list to the display, only the
bounding rectangle of changes is updated, minimiz-
ing the copying required.

This mechanism for background updates has
several advantages over methods that require each
window to keep track of which parts are covered.
All information required by the update process is
completely contained in the update module, which is
less than 300 lines of C code. This also frees all
other aspects of the window system from dealing
with overlapping updates. No other code anywhere
has to deal with which window is covering what and
where. Only the covered flag is maintained.

Another advantage of this technique is that of
lazy evaluation. If background updates are never
required, there is no cost penalty associated with the
update management.

Draft (16)



- 9 -

On the down side, it can take a long time to
compute the update list for a window (up to a
second), especially if it has pieces of 40 or 50 other
windows on top of it. Fortunately, the update list is
computed infrequently. In the typical case, the time
lag is imperceptible.

Display Optimizations

For many current client programs that run in a
window, including the editors, shells and mail, much
of the effort expended by the window manager on
behalf of the client program involves scrolling the
display. On some hardware, including the Sun
Workstations, scrolling can be effected more
efficiently if the left and right edges of the scrolled
region are aligned on byte boundaries. With the
ALIGN compile option of MGR, windows are always
placed so a byte boundary happens somewhere
between the outer edge of the window border and the
first (or last, for the right edge) pixel of the window.
Using MGR standard 5 pixel window borders, MGR

will adjust the edges of the window up to 2 pixels in
order for the windows to conform to the byte align-
ment criterion. When the entire window is scrolled,
which can happen frequently, a special byte aligned
scrolling routine is called to optimize scrolling.

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 6. Some Sample MGR Fonts

Fonts

Character fonts in MGR are global resources,
they do not belong to a particular window, although
a client program may add new fonts to MGR as
needed. The character fonts displayed in a window
may be changed by a client program, on a character
by character basis, and characters may be placed at
arbitrary positions on the window. Each font is
stored interally as a single bitmap, with the charac-
ters of the font strung end to end, in ASCII collating
sequence. See figure 6 for some sample MGR fonts.

For some display hardware there exists frame
buffer memory that is accessible to MGR, but not
mapped onto the display. This hidden display
memory is often faster in terms of updates to the
display than main memory. Consequently fonts,
whose characters are copied to the display fre-
quently, are best stored in hidden display memory.
To best manage this memory the fonts can be cached
on a most recently used basis. On computers with no
hidden display memory main memory is used to
cache fonts instead.

Menus

MGR has built-in facilities for managing pop-
up menus. A pop-up menu is a list of choices that
appears in response to depressing a mouse button.
Although pop-up menus can be implemented almost
entirely by the client program, as MGR needs them
for its own use anyway, it provides complete menu
handling services for client programs. Not only does
this insure uniformity of the user interface - all
menus look and feel the same, but the response time
for menus is immediate since they are handled inter-
nally. The MGR menu system provides client pro-
grams with a wide range of menu capabilities. Posi-
tion or context sensitive menus, slide-off or hierar-
chies of menus, and paging or "deck of cards" style
menus are all supported. Menus are used by client
programs by defining in advance (or downloading)
the choices of each menu along with the actions
associated with each choice. Actions are ASCII char-
acter strings that are send to the client program when
a menu item is chosen. Up to a hundred menus may
be defined and downloaded by a client program at
once, while the selection of which menu pops-up in
response to a mouse button hit is selected indepen-
dently.

Draft (16)



- 10 -

As soon as a menu is downloaded, MGR creates
an image of the menu in memory. When the menu is
to pop-up, as its image is already available, it
appears immediately, with never a delay. Thus users
are never left in the lurch, holding down a button,
wondering if a menu will ever pop-up. Once the
menu is on the display, the menu handler takes over
from the main process loop, processing mouse input
and tracking the mouse exclusively to insuring
immediate response to all menu selection activities.
As soon as a menu item is selected, the menu is
erased from the display, the menu action is sent to
the client program, and normal processing resumes.

The menu system is implemented in two
layers. The first or bottom level consists of five rou-
tines that control a single menu. The top level of the
menu system calls the bottom level routines and
itself recursively to produce hierarchies of menus.
The bottom level routines cooperate by passing a
menu state descriptor among themselves, altering the
current state of a menu appropriately.

The five bottom level menu management rou-
tines operate as follows:

(1) Menu_define is given the list of menu
items, and the current character font. It sets up
a menu descriptor and creates an image of the
menu in memory.

(2) Menu_setup is called with the menu
descriptor provided by menu_define , and a
location on the display. The part of the display
about to be covered by the menu is exchanged
with the already created image of the menu,
and the appropriate item is highlighted.

(3) Menu_get is called with the descriptor of a
menu already visible on the display.
Menu_get reads and tracks the mouse until
either the mouse button is released, or the
mouse is dragged out of the menu.
Menu_get then sets a status word in the
menu descriptor indicating why it terminated.
Item three was chosen or the mouse exited,
stage right, off the end of menu item one are
examples of the menu status.

(4) Menu_remove is the inverse of
menu_setup . It exchanges the saved portion
of the display with the menu.

(5) Menu_destroy is called when a menu is no
longer neeeded. It destroys the menu image

and menu descriptor, and frees all resources
associated with the menu.

The high level menu interface routine,
do_menu , is called with a list of predefined menus,
a set of menu links that determine how the menus are
related to each other and the name of the current
menu. If the user slides off to the right of a menu
that is linked to another menu, do_menu calls
itself with the name of the next current menu.

Sometimes the choice of which menu to have
popped-up is dependent on where the mouse is. In
such circumstances, the client program may have
any possible menus already downloaded, but have
none selected to pop-up. As soon as the mouse but-
ton is depressed, the client program may query its
position, and while the button is still down, select a
menu. The menu will then pop-up immediately.

Although MGR supplies client programs with a
comprehensive menu package, there are some
instances where client programs need to manage the
menus themselves. For these client programs, MGR

provides access to the low level menu interfaces rou-
tines.

Events

An asynchronous change to the state of the
window system is called an event. A mouse button
push or a window reshape are examples of events.
There are sixteen events currently defined by MGR.
They are summarized in table 1.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Table 1: MGR event typesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

BUTTON 1 up end mouse button released

BUTTON 1 end mouse button pushed

BUTTON 2 up middle mouse button released

BUTTON 2 middle mouse button pushed

DEACTIVATE window deactivated

DESTROY window destroyed

MOVE window moved

RESHAPE window reshapediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ACCEPT accept messages

ACTIVATE window activated

COVERED window covered

NOTIFY set ID string for other windows

UNCOVERED window uncovered

REDRAW display refresh requestediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PASTE text was just pasted

SNARFED text was put into cut bufferiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The first group of events can be sent only to the

Draft (16)



- 11 -

currently active window. The next group of events
may affect any window, whereas the final group of
events affect all of the windows.

For any of the event types, a client program
never receives event notification unless the event
was requested. Events are requested by specifying
an ASCII string (the event string) to be returned to the
client program when the event occurs. For most
events, printf like escapes in the form of %X
may be imbedded in the event string, where X
represents a substitution parameter. When an event
occurs, the %X is replaced by the value of the
parameter it represents. An event string specified as:

iiiiiiiiiiiiiiii
"Hello %p there"iiiiiiiiiiiiiiiicc cc

might be returned by MGR as
iiiiiiiiiiiiiiiiii
"Hello 26 43 there"iiiiiiiiiiiiiiiiiicc cc

where the %p was replaced by the current mouse
position.

Most of the events listed in the table represent
obvious changes to the window system state. How-
ever, several need a little more explanation. The
ACCEPT event provides the mechanism for a client
program to receive a message from another client
program. The event string associated with the event
is used to encapsulate the message. Like the
ACCEPT event, the NOTIFY event is used to facilitate
communication among client programs. The
NOTIFY event string, unlike the other events, is not
sent to the client program that sets the event string.
Instead, the event string is made available to other
client programs as a %X parameter, normally asso-
ciated with a button event. This mechanism permits
the construction of client programs that act as servers
to other client programs without requiring any
arrangements to be made in advance. The NOTIFY

message contains the information needed to utilize
the server program’s services.

The final use for %X parameters in event
strings is to instruct MGR to rubber-band (or change
the size or position of an object in response to the
mouse) an object, such as a line or box for the client
program, and report back its coordinates. By having
MGR rubber-band the object instead of the client pro-
gram, not only is the rubber-banding done more
smoothly, but is easier for the client program, and
more uniform at the user interface.

Managing the Window Environment

Connections to remote computers in MGR are
typically created at start-up time, and remain for a
long time; many client programs reuse the same con-
nection. To insure a client program receives a
known windowing environment when it begins,
MGR provides a facility to manipulate the window-
ing environment, permitting a client program to push
some or all of the existing environment on a stack, or
selectively inherit the windowing environment from
a predecessor. Using this facility, client programs
may be stacked with each creating its own environ-
ment, yet return to the calling program with the ori-
ginal environment intact.

Cut and Paste Strategies

A desirable capability of any window system is
the ability to copy text from one window and paste it
into a different window, regardless of the application
or remote host in the window. There are three plau-
sible strategies for implementing cut-and-paste in a
window system.

The simplest way for a window system to pro-
vide this capability is to maintain one or more glo-
bally accessible cut buffers that client programs may
use to share data. This method is satisfactory for
new applications, written specifically to use the
feature, but the hundreds of existing applications that
do not have the window system specific cut-and-
paste built into them can not use it.

Another strategy for cut-and-paste involves
saving an ASCII interpretation of the data going to the
window, which may be recalled as the user sweeps
out text to be copied. This approach is feasible if
restrictions are placed on the type of data that can be
put in the window. This strategy restricts the output
to a window to contain a single, fixed width font
whose characters are permitted only on a fixed grid,
as with a typical CRT. The reason for these restric-
tions is to permit a rapid conversion from window
coordinates, back to the original representation. If
arbitrary ASCII combinations of different character
fonts, characters at arbitrary pixel locations, and
graphic objects, such as lines and circles are permit-
ted on the same window, a carefully sorted list of
each object on the window would need to be main-
tained in some ASCII form to effect the cut half of
cut-and-paste. Sorting and maintaining this list is
too slow, especially as part of the window scrolls

Draft (16)



- 12 -

away, which requires the positions of each object in
the list to be updated.

The third technique available to perform cut-
and-paste is to turn the image on the window back
into characters, by recognizing the bit patterns. With
this method, the problems of the previous method
are avoided, permitting arbitrary graphics in any
window, yet still permitting the cutting and pasting
of text for terminal based, text-only applications,
such as vi , mail or the shell. The advantages of
this method are 1) No effort or cost expended unless
the cut is actually invoked by the user, 2) No restric-
tions need to be placed on the type or complexity of
objects that may appears in a window. The disad-
vantages of this technique are 1) Speed. Since the
ASCII representation has to be re-created from the bit
image, it takes longer that other methods. Finally, as
the actual bits on the display are used to recreate the
text, what you get is what you see (WYGWYS),
which is not always what you want. Notably, tabs,
spaces, and nonprinting control characters are indis-
tinguishable.

MGR and Paste Algorithms

MGR uses the two of the cut-and-paste stra-
tegies outlined above. A cut buffer is available for
any client program to write to or read from. The
user may request for the contents of the cut buffer to
be send to a client program.

MGR implements cut-and-paste by translating
the image on a window back into ASCII characters.
When the user requests a cut , by selecting the
appropriate option on the command menu, MGR

notes the current character font and position and
presents a rubber-band box to the user that moves in
increments of a character size in response to the
mouse. Figure 7 illustrates character text being
swept out in preparation for cutting . The user
releases the mouse to indicate the extent of the swept
text. If this is the first time the user has requested a
cut in this character font, each glyph in the font is
hashed into a table. Each character sized region
swept by the user is hashed, and compared with the
glyphs with the same hash value. If no match is
found, the process is repeated for the reverse video
version of the character. Once the characters have
been found in the hash table, trailing blanks are
stripped, and leading spaces changed to tabs as
required. The resultant ASCII string then replaces or
is appended to the global buffer.

The paste function simply inserts the current
contents of the global cut buffer into the client pro-
gram input stream, as if those characters had been
typed at the keyboard.

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 7. Rubber-band box used to indicate text to be cut.

Command Processing
The command processor interprets the stream

of bytes coming from a client program to a window
and performs the appropriate actions described by
those bytes. The command processor is passed a
string of bytes to interpret. It interprets one or more
bytes in the string, then returns the number of bytes
processed.

An important feature of the command inter-
preter is its ability to function without any
knowledge about the state of the window system as a
whole. It simply processes commands for its win-
dow as if it was the only window on the display.
When the command processor writes a character on
the window, for example, it makes know difference
whether the window is visible or covered, or if part
of that character might be obscured by some other
window. This feature greatly simplifies the design
and implementation of the command processor.

When the command processor is called,
updates affect either the display directly, if the win-
dow is completely exposed, or the backup copy
when the window is covered. Transferring the

Draft (16)



- 13 -

updates from the backup copy to the visible portions
of the display copy are handled by the update
manager, not the command processor.

Windows taking most of the users attention
tend to be uncovered; its hard to interact usefully
with a window you cannot see. Such uncovered win-
dows operate at full speed, with update going to
them directly. Obscured windows pay the perfor-
mance penalty of having each update done twice,
one to the backup copy, then again to a visible por-
tion of the window. This performance penalty is
more than justified by the resultant simplification of
the command processor design.

In addition, this strategy for MGR was origi-
nally chosen anticipating graphics display architec-
tures that manage the overlapping windows in
hardware, such as in the YAB4 terminal. Such
hardware would take separate memory images of
each window, and map them onto the display with
the appropriate overlapping and clipping.

When the command processor receives a com-
mand that could potentially change the window’s
relationship with other windows on the display, such
as reshaping or moving the window, as soon as that
operation is completed, the command processor
returns immediately, as it has no way of knowing
whether to draw on the display or into memory at
this point. Any remaining data to be processed will
be dealt with on the next call to the command pro-
cessor.

To maintain smooth window system operation
it is important that updates to one window not take
too much time or else window system updates
appear bursty. The command processor keeps track
of how much time it has spent for one window to
insure the window does not get too much time. This
is accomplished with a simple strategy. Each possi-
ble command is assigned one of two costs, cheap or
expensive. Operations such as drawing a single
character, or moving the cursor position are exam-
ples of cheap operations. Scrolling the entire win-
dow is an expensive operation. The command pro-
cessor permits exactly one expensive operation per
call. In practice, this is easy to compute and it works
effectively; a more sophisticated mechanism,
although possible does not seem necessary.

The last role of the command processor applies
only when the window is covered. The smallest rec-
tangle within the window that completely contains

all changes made to that window is computed. This
rectangle is passed on to the display update routine,
permitting updates to the display from the backup
copy of the window to be handled more efficiently.

Command Language

The language understood by the command pro-
cessor is stream based. Unlike X , whose XLIB 5

interface is defined in terms of C language function
calls, the MGR command protocol is defined by par-
titioning the byte stream from a client program to
MGR into commands. This protocol is based on the
idea that simple things should be simple to do,
whereas complex actions might require complex
commands. At minimum, a window needs to look
like a terminal, so the entire existing pool of terminal
based applications work unmodified in a window.
Thus the simplest form of the MGR command proto-
col is <ESC>X, where ESC is the ASCII escape char-
acter (octal 033) and X , the command character, is
any one of the 96 printable ASCII characters. Com-
mon terminal like commands, such as insert line or
move cursor are simply <ESC>X for the appropriate
character X .

Although many commands can be represented
as <ESC>X, some require parameters. Such parame-
ters are passed in the form: <ESC> x1, x2,... xnX
where x1 to xn are comma (or semicolon) separated
signed integers. The ASCII representation for
integers is used to permit the protocol to work over
seven bit channels. In addition, several commands
require sending arbitrary data as part of a command,
such as downloading a bitmap image to MGR. This
is accomplished by a command of the form: <ESC>
x1, x2,...,<len>X<data>, where <len>, a positive
integer, is the count of bytes following the command
character, X, to be taken as part of this command.

This command protocol is extensible in the
sense that both new command characters may be
added, at least up to the 96 printable ASCII charac-
ters, and extended parameter lists may be added to
existing commands. If the need arizes to send a dif-
ferent type of command, this new command type can
be encapsulated in the data field of the third com-
mand type.

All commands to MGR are asynchronous, that
means the client assumes they will be performed in a
reasonable amount of time. A few commands return
status or window state information, but they too are

Draft (16)



- 14 -

asynchronous; the client does not need to wait for a
reply, but can continue to send new commands and
data to MGR.

The reply to a command is distinguishable by
the client program because the format of the reply is
determined by the client program before the com-
mand was issued. It is therefore possible to reliably
distinguish between a keyboard character and the
reply to some previous command. MGR does
guarantee that 1) all command replies will be sent in
the order that the command was received and 2) a
reply will always be sent for every command that
expects one.

Any characters sent to MGR between com-
mands, are interpreted as characters to be drawn on
the window at the current character cursor position,
as one would expect from an ordinary terminal.

User Interface
The user interface was designed to meet two

goals: it should be easy to use and very responsive.
To keep the interface easy to use and learn, it was
kept simple. A single mouse button is dedicated to
window manipulation, and the few actions available
are fast and consistent. All window manipulations
happen to the top, or active window, which is
always easily identified by its emboldened border.
The only action permitted on non-active windows is
making them the active window6. Although only a
small subset of the possible window manipulations is
available to the user, in practice it is a sufficient set
and easy to master.

Several design decisions were made to achieve
fast response in the user interface. As discussed
above, keyboard input and mouse tracking have
highest priority in the MGR scheduler. All pop-up
menus used by MGR, including both the system
menus and downloadable applications menus, have
their images created and saved in memory as soon as
the menus is defined. Consequently, as soon as the
mouse button is pushed requesting a menu to pop-
up, it appears with no perceptible delay. Ever.

Once the menu has appeared, MGR continues
to track the mouse while in the menu, highlighting
the various menu items as appropriate, with no appli-
cation intervention. As long as the user is selecting
an item from a menu, only the mouse input is pro-
cessed, and the rest of the display freezes until the

selection is made. The user need not desperately try
to select an object with a menu item before it gets
away, scrolling off the window. Time stands still for
the user to make the selection at their own pace.

Similarly, MGR will rubber-band objects such
as lines and boxes on behalf of client programs. The
applications do not need to track the mouse, and the
user is assured the fasted possible response, even
under heavy load.

For advanced users, it is often an annoyance to
stop typing, grope for the mouse to select a menu
item, then have to relocate hands back onto the key-
board at the proper position. For these users, or any-
one else who is not particularly fond of rodents, the
pop-up menu activated system functions, as well as
several other shortcut commands have keyboard
equivalents, activated by pressing a special meta key
on the keyboard along with a mnemonic keyboard
command character. On the Sun keyboard, the
left or right keys serve this purpose. Expert
MGR users rarely use the mouse for system interac-
tion; it is faster to use the keyboard instead.

Device Interfaces
MGR interacts with three hardware devices, the

mouse, the keyboard, and the display. In all cases
the interfaces to these devices is well demarkated,
resulting in easy portability to different hardware.

For the keyboard, MGR simply uses its stan-
dard input stream. Characters with their high order
bit on are taken to be meta keys that invoke system
functions. On the Sun Workstations, keyboard input
is confused with the system bell, and the redirection
of system messages, so there are special Sun specific
keyboard initialization routines to correct for the
confoundment. For normal systems the keyboard
gets no special treatment.

For the mouse, MGR opens a serial port, nor-
mally /dev/mouse , and expects to find data in
either Mouse Systems mouse format7, or in Sun’s
modified Mouse Systems mouse format. For the ini-
tial stages of an MGR port, simply plug a mouse sys-
tems compatible mouse into a serial port and the job
is done. For systems with their own mouse, the
mouse interface looks like:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
button=mouse_get(x_delta,y_delta)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

where button is the state of the mouse buttons, and

Draft (16)



- 15 -

(x_delta,y_delta) is the number of units the mouse
moved since the last call to mouse_get . MGR

tracks the mouse on the display. For systems that
track the mouse in hardware, MGR provides set of
macros for the mouse tracking and mouse cursor
interface. These macros may be redefined, or for the
Macintosh as an example, set to do nothing, permit-
ting the hardware to track the mouse.

Display Interface Definition

The most complex interface is that to the
display hardware. It consists of the seven routines
show below:

iiiiiiiiiiiiiiiiiiiiiiii
Display Interface Routinesiiiiiiiiiiiiiiiiiiiiiiii
bit_open
bit_create
bit_alloc
bit_destroy
bit_blit
bit_line
bit pointiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

These routines all reference a data type called a BIT-

MAP and a set of access macros that return specific
information contained in the BITMAP structure.

A bitmap is a rectangular array of pixels, where
each pixel is one bit, for monochrome MGR, and one
or eight bits for color MGR, along with sufficient
information to perform a bitblit8 on a pair of
BITMAP s. The MGR interface to the display consists
of:

bit_open
Returns a BITMAP pointer to the entire display.

bit_create
takes an existing bitmap and creates a new one
whose pixels are a subset of the one supplied.

bit_alloc
creates a new BITMAP in memory of a
specified size. The image data for the bitmap
may be supplied, or allocated as needed.

bit_destroy
destroys a BITMAP by freeing all resources
associated with it.

bit_blit
performs a bit_blit between two BITMAP s. The
bitmaps may be both on the display, both in
memory, or any combination of display and
memory. For monochrome bitmaps, one of the

16 possible bit-blit functions may be specified.
If no source BITMAP is provided, then the
source is taken to be an infinite supply of one
bits. For bit_blit calls in which both bitmaps
contain eight bit pixels, the bit-blit operation,
is performed bit-wise for each bit in the pixel.

If the source bitmap contains one bit deep pix-
els, but the destination is eight bits per pixel,
then the source BITMAP is expanded to eight
bits per pixel by assigning to each "on" bin a
foreground color, and to each "off" bit a back-
ground color. Bitblits in which the destination
BITMAP has 1 bit per pixel while the source
BITMAP contains eight bits per pixel are not
used by MGR, so their exact operation is
undefined.

bit_line
draws a line on the BITMAP Lines may be set,
cleared, or inverted.

bit_point
is functionally equivalent to a bitblit of a single
pixel, but is a separate function for potential
performance gains. All graphics objects in
MGR except lines, such as circles and elliptical
arcs are implemented in terms of calls to
bit_point. Where special hardware is
available to warrant it, those graphics routines
may be recoded in a hardware dependent way
to improve their speed.

All access to the parameters of the BITMAP

structure are through macro calls that isolate the
specifics of the structure from MGR, permitting new
different BITMAP structures to be implemented
without changing MGR.

Summary
MGR was built to be a small, portable, network

capable window management system that provides
sensible capabilities for an ill defined heterogeneous
network environment. The decision to include a
feature in MGR, or off-load that capability into the
client programs was made to insure uniformity and
responsiveness of the user interface while maximiz-
ing the networking capabilities of the system.

The algorithms and techniques used to imple-
ment MGR were chosen for simplicity and modular-
ity, not necessarily theoretical elegance. They func-
tion quickly and reliably, and have ported easily to

Draft (16)



- 16 -

several other operating system platforms. The
resulting system is fast, fairly small, asn widely used
in the local research community.

References
1 D. Ritchie and K. Thompson, The UNIX

timesharing system , Bell System Technical
Journal, vol. 57, no. 6, part 2, July-August
1978.

2 J. L. Alberi and M. F. Pucci, The Dune Distri-
buted Operating System, Bellcore Technical
Memorandum TM-ARCH-010642, 1987,
Morristown N.J.

3 Frank da Cruz and Bill Catchings, Kermit
User’s Guide , Columbia University, 6th Edi-
tion

4 Jackson, Namon Yet Another Bitmapped Ter-
minal Bellcore TM # TM-ARH-000-988
3/25/85

5 Ingalls, D., The Smalltalk Graphics Kernel ,
Byte Magazine, 6(8), August, 1981

6 J. Gettys, R. Newman, T. Della Fera, Xlib - C
Language X Interface January 1986.

7 S. A. Uhler MGR users manual 1987, Bellcore
Morristown, NJ.

8 M-2 Optical Mouse Technical Reference
Manual January 1984, Mouse Systems Cor-
poration Santa Clara Ca.

Draft (16)


